本题共有3个小题,第一小题3分,第二小题7分,第三小题6分 如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点,(1)若,求曲线的方程;(2)如图,作直线平行于曲线的渐近线,交曲线于点A、B,求证:弦AB的中点M必在曲线的另一条渐近线上;(3)对于(1)中的曲线,若直线过点交曲线于点C、D,求面积的最大值。
(本小题满分12分)袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用X表示得分数.(1)求X的概率分布列;(2)求X的数学期望EX.
(本小题满分12分)求函数的极值.
(本小题满分12分)求证:32n+2-8n–9(n∈N*)能被64整除.
(本小题满分12分)在二项式(+)n的展开式中,前三项的系数成等差数列,求展开式中的有理项.
设,函数的定义域为且,当时有(1)求;(2)求的值;(3)求函数的单调区间.