本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.(1)数列各项均不为0,前n项和为,,的前n项和为,且,若数列共3项,求所有满足要求的数列;(2)求证:是满足已知条件的一个数列;(3)请构造出一个满足已知条件的无穷数列,并使得;若还能构造其他符合要求的数列,请一并写出(不超过四个)。
如图,⊥平面,=90°,,点在上,点E在BC上的射影为F,且. (1)求证:; (2)若二面角的大小为45°,求的值.
如图,在四棱锥中,底面ABCD是一直角梯形,,,,且PA=AD=DC=AB=1. (1)证明:平面平面 (2)设AB,PA,BC的中点依次为M、N、T,求证:PB∥平面MNT (3)求异面直线与所成角的余弦值
已知点、到直线的距离相等,且直线经过两条直线和的交点,求直线的方程。
(本小题14分)抛物线与直线相交于两点,且 (1)求的值。 (2)在抛物线上是否存在点,使得的重心恰为抛物线的焦点,若存在,求点的坐标,若不存在,请说明理由。
(本小题13分)已知函数在点处的切线与直线垂直. (1)若对于区间上任意两个自变量的值都有,求实数的最小值; (2)若过点可作曲线的三条切线,求实数的取值范围.