已知等比数列{an}的前n项和为Sn,A1="3," 且3S1 , 2S2 , S3成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log3an,求Tn=b1b2 - b2b3 + b3b4 - b4b5 + … + b2n-1b2n - b2nb2n+1
已知函数. (1)讨论f(x)在区间(0,1)上的单调性; (2)当a∈[3,+∞)时,曲线上总存在相异的两点,使得曲线在点P,Q处的切线互相平行,求证:.
已知函数. (1)若直线与的反函数的图象相切,求实数k的值; (2)设,讨论曲线与曲线公共点的个数; (3)设,比较与的大小,并说明理由.
已知动点P,Q都在曲线C: (t为参数)上,对应参数分别为t=与t=2(0<<2π),M为PQ的中点. (1)求M的轨迹的参数方程; (2)将M到坐标原点的距离d表示为的函数,并判断M的轨迹是否过坐标原点.
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为(,),直线l的极坐标方程为ρcos()=a,且点A在直线l上. (1)求a的值及直线l的直角坐标方程; (2)圆C的参数方程为(为参数),试判断直线l与圆C的位置关系.
在等差数列中,,.令,数列的前项和为. (1)求数列的通项公式和; (2)是否存在正整数,(),使得,,成等比数列?若存在,求出所有 的,的值;若不存在,请说明理由.