如图(1),△BCD内接于直角梯形A1A2A3D,已知沿△BCD三边将△A1BD、△A2BC、△A3CD翻折上去,恰好形成一个三棱锥ABCD,如图(2)所示. (1)求证:在三棱锥ABCD中,AB⊥CD;(2)若直角梯形的上底A1D=10,高A1A2=8,求翻折后三棱锥的侧面ACD与底面BCD所成二面角θ的余弦值.
(本小题满分12分)在中,角的对边分别为,且成等差数列。 (Ⅰ)若,且,求的值; (Ⅱ)求的取值范围。
设函数. (1)画出函数y=f(x)的图像; (2)若不等式,(a¹0,a、bÎR)恒成立,求实数x的范围.
(本小题满分10分)在直角坐标平面内,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线的参数方程是(为参数)。 求极点在直线上的射影点的极坐标; 若、分别为曲线、直线上的动点,求的最小值。
(本小题满分10分)从⊙外一点引圆的两条切线,及一条割线,、为切点.求证:
已知函数 若函数在区间(a,a+)上存在极值,其中a>0,求实数a的取值范围; 如果当时,不等式恒成立,求实数的取值范围。