A(2,3),B(5,4),C(7,10),=+.当为何值时,(1)点P在第一、三象限的角平分线上;(2)点P到两坐标轴的距离相等?
已知角终边上一点P(-4,3),求的值
已知数列满足且对一切, 有 (Ⅰ)求证:对一切 (Ⅱ)求数列通项公式. (Ⅲ)求证:
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. (I)求椭圆的方程; (II)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(O为坐标原点),当<时,求实数的取值范围.
已知函数f(x)=,为常数。 (I)当=1时,求f(x)的单调区间; (II)若函数f(x)在区间[1,2]上为单调函数,求的取值范围。
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (I)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为.求关于的一元二次方程有实根的概率; (II)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n.若以作为点P的坐标,求点P落在区域内的概率.