已知A(-2,4),B(3,-1),C(-3,-4).设=a,=b,=c,且=3c,=-2b,(1)求:3a+b-3c;(2)求满足a=mb+nc的实数m,n.
如图,现要在边长为的正方形内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为(不小于)的扇形花坛,以正方形的中心为圆心建一个半径为的圆形草地.为了保证道路畅通,岛口宽不小于,绕岛行驶的路宽均不小于. (1)求的取值范围;(运算中取) (2)若中间草地的造价为元,四个花坛的造价为元,其余区域的造价为元,当取何值时,可使“环岛”的整体造价最低?
如图,在正三棱柱中,,分别为,的中点. (1)求证:平面; (2)求证:平面平面.
在中,角,,所对的边分别是,,,已知,. (1)若的面积等于,求,; (2)若,求的面积.
设是给定的正整数,有序数组()中或. (1)求满足“对任意的,,都有”的有序数组()的个数; (2)若对任意的,,,都有成立,求满足“存在,使得”的有序数组()的个数.
已知点在抛物线:上. (1)若的三个顶点都在抛物线上,记三边,,所在直线的斜率分别为,,,求的值; (2)若四边形的四个顶点都在抛物线上,记四边,,,所在直线的斜率分别为,,,,求的值.