某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min抽取一包产品,称其重量,分别 记录抽查数据如下: 甲:102, 101, 99, 98, 103, 98, 99; 乙:110, 115, 90, 85, 75, 115, 110. (1)这种抽样方法是哪一种? (2)将这两组数据用茎叶图表示; (3)将两组数据比较,说明哪个车间产品较稳定.
某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
(1)请先求出频率分布表中①、②位置相应的数据,再在答题卷上完成下列频率分布直方图; (2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试? (3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?
直三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点. (1)求证:直线AB1⊥平面A1BD. (2)求二面角A-A1D-B正弦值的大小.
给定两个命题,P:对任意实数x都有x2+x+1>0恒成立;Q:关于x的方程x2-x+=0有实数根.如果P∨Q为真命题,P∧Q为假命题,求实数的取值范围.
已知函数的图象在点(e为自然对数的底数)处取得极值-1. (1)求实数的值; (2)若不等式对任意恒成立,求的取值范围.
已知椭圆C:的左、右焦点和短轴的一个端点构成边长为4的正三角形. (1)求椭圆C的方程; (2)过右焦点的直线与椭圆C相交于A、B两点,若,求直线的方程.