在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交 作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?
设函数+2。 (1)求的最小正周期。 (2)若函数与的图象关于直线对称,当时,求函数的最小值与相应的自变量的值。
已知数列的前和为,其中且 (1)求 (2)猜想数列的通项公式,并用数学归纳法加以证明.
已知为实数,,为的导函数. (1)求导数; (2)若,求在上的最大值和最小值; (3)若在和上都是递增的,求的取值范围.
设函数,曲线在点处的切线方程为. (1)求的解析式;(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.
本题满分10分)已知由曲线,直线以及x轴所围成的图形的面积为S. (1)画出图像 (2)求面积S