已知函数f(x)=ex+2x2—3x(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2) 当x ≥1时,若关于x的不等式f(x)≥ax恒成立,求实数a的取值范围;(3)求证函数f(x)在区间[0,1)上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,≈1.6,e0.3≈1.3)。
(满分12分)已知点,直线:交轴于点,点是上的动点,过点垂直于的直线与线段的垂直平分线交于点. (Ⅰ)求点的轨迹的方程;(Ⅱ)若 A、B为轨迹上的两个动点,且证明直线AB必过一定点,并求出该定点.
(满分12分)设函数。 (Ⅰ)若在定义域内存在,而使得不等式能成立,求实数的最小值; (Ⅱ)若函数在区间上恰有两个不同的零点,求实数的取值范围。
(满分12分)已知:正方体中,棱长,、分别为、的中点,、是、的中点, (1)求证://平面; (2)求:到平面的距离。
(满分10分)(Ⅰ) 设椭圆方程的左、右顶点分别为,点M是椭圆上异于的任意一点,设直线的斜率分别为,求证为定值并求出此定值; (Ⅱ)设椭圆方程的左、右顶点分别为,点M是椭圆上异于的任意一点,设直线的斜率分别为,利用(Ⅰ)的结论直接写出的值。(不必写出推理过程)
(本小题满分14分) 二次函数. (1)若对任意有恒成立,求实数的取值范围; (2)讨论函数在区间上的单调性; (3)若对任意的,有恒成立,求实数的取值范围.