某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖。 (Ⅰ)用球的标号列出所有可能的摸出结果; (Ⅱ)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由。
如图,在三棱锥中,已知是正三角形,平面,,为的中点,在棱上,且, (1)求证:平面;(2)若为的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由;
如图,四棱锥的底面是边长为2的正方形,其他四个侧面都是侧棱长为的等腰三角形.若分别为棱的中点,(1)求证:∥侧面;(2)试求与底面所成角的正弦值.
在平面直角坐标系中,曲线与坐标轴的交点都在圆上(1)求圆的方程;(2)若圆与直线交于两点,且,求的值.
如图,在四面体中,,,点分别是的中点(1)求证:平面平面;(2)当,且时,求三棱锥的体积
如图,在平面直角坐标系中,点,直线,设圆的半径为,圆心在上.若圆心也在直线上,过点作圆的切线,求切线的方程;