已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.(Ⅰ)若,求外接圆的方程;(Ⅱ)若直线与椭圆相交于两点、,且,求的取值范围.
已知函数,。 (1)求函数的解析式; (2)若对于任意,都有成立,求实数的取值范围; (3)设,,且,求证:。
如图,已知点D(0,-2),过点D作抛物线:的切线l,切点A在第二象限。 (1)求切点A的纵坐标; (2)若离心率为的椭圆恰好经过A点,设切线l交椭圆的另一点为B,若设切线l,直线OA,OB的斜率为k,,①试用斜率k表示②当取得最大值时求此时椭圆的方程。
据统计某种汽车的最高车速为120千米∕时,在匀速行驶时每小时的耗油量(升)与行驶速度(千米∕时)之间有如下函数关系:。已知甲、乙两地相距100千米。 (1)若汽车以40千米∕时的速度匀速行驶,则从甲地到乙地需耗油多少升? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的倍,其上一点到右焦点的最短距离为 (1)求椭圆的标准方程; (2)若直线交椭圆于两点,当时求直线的方程
已知直线与抛物线没有交点;方程表示椭圆;若为真命题,试求实数的取值范围.