如图1,的直径AB=4,点C、D为上两点,且CAB=45°,DAB=60°,F为弧BC的中点.沿直径AB折起,使两个半圆所在平面互相垂直,如图2.(I)求证:OF平面ACD;(Ⅱ)求二面角C—AD—B的余弦值;(Ⅲ)在弧BD上是否存在点G,使得FG平面ACD?若存在,试指出点G的位置;若不存在,请说明理由.
已知向量(为常数且),函数在上的最大值为. (1)求实数的值; (2)把函数的图象向右平移个单位,可得函数的图象,若在上为增函数,求取最大值时的单调增区间.
已知椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e= (1)求椭圆的标准方程; (2)若P是椭圆上的任意一点,求的取值范围; (3)已知直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的端点),AH⊥MN,垂足为H且=,求证:直线l恒过定点.
已知向量a=(cosα,sinα),b=(cosβ,sinβ),c=(-1,0). (1)求向量b+c的长度的最大值; (2)设α=,且a⊥(b+c),求cosβ的值.
已知函数,,. (1)若当时,恒有,求的最大值; (2)若当时,恒有,求的取值范围.
(设函数f(x)=|x+a|-|x-4|,xR (1)当a=1时,解不等式f(x)<2; (2)若关于x的不等式f(x)≤5-|a+l|恒成立,求实数a的取值范围.