一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列;(3)这名学生在途中至少遇到一次红灯的概率.
已知平面//平面,AB、CD是夹在、间的两条线段,A、C在内,B、D在内,点E、F分别在AB、CD上,且,求证:.
(本题满分为12分) 如图所示:已知⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A作于E,求证:.
(本题满分为10分) 在四面体ABCD中作截面PQR,若PQ,CB的延长线交于M;RQ,DB的延长线交于N;RP,DC的延长线交于K,求证:M、N、K三点共线.
已知函数. (1)当时,求证:函数在上单调递增; (2)若函数有三个零点,求的值; (3)若存在,使得,试求的取值范围。
选修4—5:不等式选讲 已知实数满足,且有 求证: