一袋中有同样大小的球10个,其中有8个标有1元钱,2个标有5元钱,交5元钱,可以参加一次摸奖,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和,求抽奖人获利的数学期望.
方程8x2+6kx+2k+1=0的两根能否是一个直角三角形的两个锐角的正弦值,若能,求出k的值;若不能,请说明理由.
求cos+cos+cos的值.
求sin42°-cos12°+sin54°的值.
已知定义在区间上的函数y=f(x)的图象关于直线x=-对称,当x∈时,函数f(x)=Asin(ωx+φ)(A>0,ω>0,- <φ<)的图象如图所示.(1)求函数y=f(x)在上的表达式;(2)求方程f(x)=的解.
在平面直角坐标系xOy中,点P在角α的终边上,点Q(sin2θ,-1)在角β的终边上,且·=-.(1)求cos2θ的值;(2)求sin(α+β)的值.