在平面直角坐标系中,原点为,抛物线的方程为,线段是抛物线的一条动弦.(1)求抛物线的准线方程和焦点坐标;(2)若,求证:直线恒过定点;(3)当时,设圆,若存在且仅存在两条动弦,满足直线与圆相切,求半径的取值范围?
(本小题满分14分)已知函数.(1)求函数的最大值;(2)若函数与有相同极值点,(ⅰ)求实数的值;(ⅱ)若对于,不等式恒成立,求实数的取值范围.
(本小题满分12分)如图,已知正方形在直线的上方,边在直线上,是线段上一点,以为边在直线的上方作正方形,其中,记,的面积为.(1)求与之间的函数关系;(2)当角取何值时最大?并求的最大值.
(本小题满分12分)二次函数满足,且最小值是.(1)求的解析式;(2)实数,函数,若在区间上单调递减,求实数的取值范围.
(本小题满分12分)在直三棱柱(侧棱垂直底面)中,平面,其垂足落在直线上.(1)求证:;(2)若,,为的中点,求三棱锥的体积.
(本小题满分12分)设的内角,,,所对的边长分别为,,,,,且.(1)求角的大小;(2)若,且边上的中线的长为,求边的值.