为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望E()为3,标准差为.(1)求n和p的值,并写出的概率分布;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.
已知分别为三个内角的对边, (Ⅰ)求; (Ⅱ)若,的面积为;求。
已知椭圆的中心在坐标原点,焦点在轴上,其左、右焦点分别为、,短轴长为,点在椭圆上,且满足的周长为6. (Ⅰ)求椭圆的方程;; (Ⅱ)设过点的直线与椭圆相交于A、B两点,试问在x轴上是否存在一个定点M使恒为定值?若存在求出该定值及点M的坐标,若不存在请说明理由.
已知函数(),. (Ⅰ)若曲线与在它们的交点处具有公共切线,求的值; (Ⅱ)当时,求函数在区间上的最大值.
有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表:已知从全部210人中随机抽取1人为优秀的概率为.
(Ⅰ)请完成上面的列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”; (Ⅱ)从全部210人中有放回抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为,若每次抽取的结果是相互独立的,求的分布列及数学期望.
如图,直三棱柱,,点M,N分别为和的中点. (Ⅰ)证明:∥平面; (Ⅱ)若二面角A为直二面角,求的值.