(本小题满分12分)设数列的前项和为,已知 (1)求数列的通项公式;(2)若,求数列的前项和
选修4-1:几何证明选讲如图,是ABC的外接圆,D是的中点,BD 交AC于E(1)求证::(2)若,O到AC的距离为1,求的半径
已知,(Ⅰ)当时,若在上为减函数,在上是增函数,求值;(Ⅱ)对任意恒成立,求的取值范围.
.已知椭圆C的中心在原点,焦点在x轴上,离心率等于 ,它的一个顶点恰好是抛物线的焦点. (Ⅰ)求椭圆C的方程; (Ⅱ)点P(2,3), Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点, ①若直线AB的斜率为,求四边形APBQ面积的最大值; ②当A、B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
如图,四棱锥中,底面ABCD为菱形,,Q是AD的中点.(Ⅰ)若,求证:平面PQB平面PAD;(Ⅱ)若平面APD平面ABCD,且,点M在线段PC上,试确定点M的位置,使二面角的大小为,并求出的值.
现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏。 (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率; (Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望 .