1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?
(本题12分,第(1)小题4分,第(2)小题8分) 已知集合. (1)求集合; (2)若,求实数的取值范围.
已知函数,若成等差数列. (1)求数列的通项公式; (2)设是不等式整数解的个数,求; (3)记数列的前n项和为,是否存在正数,对任意正整数,使恒成立?若存在,求的取值范围;若不存在,说明理由.
已知椭圆的焦点,过作垂直于轴的直线被椭圆所截线段长为,过作直线l与椭圆交于A、B两点. (1)求椭圆的标准方程; (2)若A是椭圆与y轴负半轴的交点,求的面积; (3)是否存在实数使,若存在,求的值和直线的方程;若不存在,说明理由.
已知函数. (1)当时,求满足的的取值范围; (2)若的定义域为R,又是奇函数,求的解析式,判断其在R上的单调性并加以证明.
本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 如图,已知正方体的棱长为2,分别是的中点. (1)求三棱锥的体积; (2)求异面直线EF与AB所成角的大小(结果用反三角函数值表示).