在Rt△ABC中,∠A=30°,过直角顶点C作射线CM交线段AB于M,求使|AM|>|AC|的概率.
如图,是的直径,弦与垂直,并与相交于点,点为弦上异于点的任意一点,连结、并延长交于点、. ⑴ 求证:、、、四点共圆; ⑵ 求证:.
已知函数. ⑴ 求函数的单调区间; ⑵ 如果对于任意的,总成立,求实数的取值范围; ⑶ 设函数,. 过点作函数图像的所有切线,令各切点的横坐标构成数列,求数列的所有项之和的值.
如图,曲线与曲线相交于、、、四个点. ⑴ 求的取值范围; ⑵ 求四边形的面积的最大值及此时对角线与的交点坐标.
如图,是矩形中边上的点,为边的中点,,现将沿边折至位置,且平面平面. ⑴ 求证:平面平面; ⑵ 求二面角的大小.
2012年第三季度,国家电网决定对城镇居民民用电计费标准做出调整,并根据用电情况将居民分为三类: 第一类的用电区间在,第二类在,第三类在(单位:千瓦时). 某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示. ⑴ 求该小区居民用电量的中位数与平均数; ⑵ 利用分层抽样的方法从该小区内选出10位居民代表,若从该10户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率; ⑶ 若该小区长期保持着这一用电消耗水平,电力部门为鼓励其节约用电,连续10个月,每个月从该小区居民中随机抽取1户,若取到的是第一类居民,则发放礼品一份,设为获奖户数,求的数学期望与方差.