如图所示,在三棱锥P—ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.(1)若k=1,试求异面直线PA与BD所成角余弦值的大小;(2)当k取何值时,二面角O—PC—B的大小为?
已知向量. (1)当时,求的值; (2)设函数, 求的值域.
已知椭圆的中心在原点O,焦点在轴上,过右焦点F的直线与右准线交于点D,与椭圆交于A、B两点,右准线与轴交于C点,若成等差数列,且公差等于短轴长的.(1)求椭圆的离心率; (2)若的面积为,求椭圆的方程.
设函数为实数。 (Ⅰ)已知函数在处取得极值,求的值; (Ⅱ)已知不等式对任意都成立,求实数的取值范围。
已知数列{an}中,a1= 1,前项和为,且(n∈N*) (1)求与的值; (2)设,是数列的前项和,求数列的通项公式.
已知直角梯形ABCD中,,,且,点E、F分别在AD、BC上,满足.现将此梯形沿EF折叠成如图所示图形,且使. (1)求证:AE⊥平面ABCD; (2)求二面角的大小.