已知四棱锥的底面为直角梯形,,底面,且,是的中点.(Ⅰ)证明:面面;(Ⅱ)求与所成的角余弦值;(Ⅲ)求面与面所成二面角的余弦值.
已知圆C的圆心在直线上,并且与直线相切于点A(2,-1).(Ⅰ)求圆C的方程;(Ⅱ)从圆C外一点M引圆C的切线MN,N为切点,且MN=MO(O为坐标原点),求MN的最小值.
如图,在三棱锥S-ABC中,∠SAB=∠SAC=∠ABC=90°,SA=AB,SB=BC.(Ⅰ)证明:平面SBC⊥平面SAB;(Ⅱ)求二面角A-SC-B的平面角的正弦值.
已知(Ⅰ)当时,求的值;(Ⅱ)指出的最大值与最小值,并分别写出使取得最大值、最小值的自变量的集合.
已知(Ⅰ)求函数的定义域;(Ⅱ)判断函数的奇偶性,并加以说明;(Ⅲ)求的值.
设函数.(Ⅰ)若是从-2、-1、0、1、2五个数中任取的一个数,是从0、1、2三个数中任取的一个数,求函数无零点的概率;(Ⅱ)若是从区间[-2,2]任取的一个数,是从区间[0,2]任取的一个数,求函数无零点的概率.