(本小题满分14分) 已知,,.(1)当时,求的单调区间;(2)求在点处的切线与直线及曲线所围成的封闭图形的面积;(3)是否存在实数,使的极大值为3?若存在,求出的值;若不存在,请说明理由.
已知函数图像上的点处的切线方程为. (1)若函数在时有极值,求的表达式; (2)函数在区间上单调递增,求实数的取值范围.
已知向量. (Ⅰ)若求; (Ⅱ)设的三边满足,且边所对应的角为,若关于的方程有且仅有一个实数根,求的值.
(本小题满分12分) 已知数列的前n项和为,且(), (1)求证:数列是等比数列; (2)设数列的前n项和为,,试比较与的大小.
(本小题满分12分) 已知的内角为A、B、C的对边分别为,B为锐角,向量 (1)求B的大小; (2)如果,求的最大值.
(本小题满分12分) 已知函数,若对一切恒成立.求实数的取值范围.(16分)