附加题(本大题共两个小题,每个小题10分,满分 20分,省级示范性高中要把该题成绩计入总分,普通高中学生选作)已知,(1)判断函数在区间(-∞,0)上的单调性,并用定义证明;(2)画出该函数在定义域上的图像.(图像体现出函数性质即可)
已知函数f(x)= ex-ax-1.(Ⅰ)若a=1,求证:;(Ⅱ)求函数y=f(x)的值域.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合,且两个坐标系的单位长度相同.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为.(Ⅰ)若直线l的斜率为-1,求直线l与曲线C交点的极坐标;(Ⅱ)若直线l与曲线C相交弦长为,求直线l的参数方程(标准形式).
(本小题满分14分)已知函数.(1)若,讨论函数的单调性;(2)若方程有两个相异实根,求实数的取值范围.
(本小题满分13分)已知椭圆,过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形. (1)求椭圆的方程;(2)过点Q(-1,0)的直线l交椭圆于A,B两点,交直线x=-4于点E,若 ,,求证λ+μ为定值,并计算出该定值.
(本小题满分12分)已知等差数列满足:,,该数列的前三项分别加上后顺次成为等比数列的前三项 (1)分别求数列,的通项公式,;(2)设若恒成立,求的最小值.