圆锥的底面半径为R,高为H,一正方体的一个面在圆锥的底面内,它所对的面的四个顶点都在圆锥的侧面上,求正方体的棱长.
选修4-1:几何证明选讲如图所示,已知为圆的直径,,是圆上的两个点,于,交于,交于,.(1)求证:是劣弧的中点;(2)求证:.
设函数 (Ⅰ)若,是否存在k和m,使得 ,,若存在,求出k和m的值,若不存在,说明理由(Ⅱ)设 有两个零点 ,且 成等差数列, 是 G (x)的导函数,求证:
已知抛物线的焦点为F,点P是抛物线上的一点,且其纵坐标为4,.(1)求抛物线的方程;(2)设点,()是抛物线上的两点,∠APB的角平分线与x轴垂直,求△PAB的面积最大时直线AB的方程.
如图,在边长为的菱形中,,点,分别是边,的中点,,沿将△翻折到△,连接,得到如图的五棱锥,且.(1)求证:平面;(2)求二面角的正切值.
为了解甲、乙两厂的产品质量,分别从两厂生产的产品中各随机抽取10件,测量产品中某种元素的含量(单位:毫克),其测量数据的茎叶图如下:规定:当产品中此种元素含量大于18毫克时,认定该产品为优等品。(1)试比较甲、乙两厂生产的产品中该种元素含量的平均值的大小;(2)从乙厂抽出上述10件产品中,随机抽取3件,求抽到的3件产品中优等品数的分布列及数学期望。