已知奇函数在区间上是增函数,且,当有,求不等式的解集
(本小题满分14分)各项为正数的数列的前项和为,且满足:(1)求;(2)设函数,求数列的前项和;(3)设为实数,对满足的任意正整数、、,不等式恒成立,求实数的最大值。
.(本小题满分13分)已知函数 (1)试确定的取值范围,使得函数在上为单调函数; (2)当时,判断的大小,并说明理由; (3)求证:当时,关于的方程在区间上,总有两个不同的解。
(本小题满分12分)设椭圆的焦点分别为,直线交轴于于点A,且。(1)试求椭圆的方程;(2)过、分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),若四边形 DMEN的面积为,求DE的直线方程。
(本小题满分12分)如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2。(1)求证:AC∥平面BEF;(2)求四面体BDEF的体积。
(本小题满分12分)品厂为了检查甲、乙两条自动包装流水线的生产情况,在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品,表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图。某食(1)若检验员不小心将甲、乙两条流水线生产的重量值在(510,515]的产品放在了一起,然后又随机取出3件产品,求至少有一件是乙流水线生产的产品的概率;(2)由以上统计数据完成下面2×2列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”。