如图,已知四边形是等腰梯形,、分别是腰、的中点,、是线段上的两个点,且,下底是上底的2倍,若,,求.
如图1,已知的直径,点、为上两点,且,,为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).(Ⅰ)求证:;(Ⅱ)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;(Ⅲ)求二面角的正弦值.
已知函数的部分图象如图所示,其中点为最高点,点为图象与轴的交点,在中,角对边为,,且满足.(Ⅰ)求的面积;(Ⅱ)求函数的单调递增区间.
已知函数,其中.(Ⅰ)若,求函数的极值点;(Ⅱ)若在区间内单调递增,求实数的取值范围.
已知圆心为点的圆与直线相切.(1)求圆的标准方程;(2)对于圆上的任一点,是否存在定点 (不同于原点)使得恒为常数?若存在,求出点的坐标;若不存在,请说明理由.
如图,在四棱锥中,⊥平面,底面为梯形,∥,⊥,,点在棱上,且.(1)当时,求证:∥面;(2)若直线与平面所成角为,求实数的值.