某工厂要建造一个长方体形无盖贮水池,其容积为4800 m,深为3m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少?
已知函数. (1)若从集合中任取一个元素,从集合中任取一个元素,求方程有两个不相等实根的概率; (2)若是从区间中任取的一个数,是从区间中任取的一个数,求方程没有实根的概率.
已知函数,其中. (1)若在处取得极值,求的值; (2)求的单调区间; (3)若的最小值为1,求的取值范围.
已知是椭圆的左、右焦点,过点作 倾斜角为的动直线交椭圆于两点.当时,,且. (1)求椭圆的离心率及椭圆的标准方程; (2)求△面积的最大值,并求出使面积达到最大值时直线的方程.
已知函数. (1)解关于的不等式; (2)若对,恒成立,求的取值范围.
已知直线的参数方程为(t为参数),曲线C的极坐标方程是以极点为原点,极轴为x轴正方向建立直角坐标系,点,直线与曲 线C交于A,B两点. (1)写出直线的普通方程与曲线C的直角坐标方程; (2)线段MA,MB长度分别记|MA|,|MB|,求|MA|·|MB|的值.