已知函数,当时有最小值8,求的值.
(本小题满分12分) 如图所示,动物园要围成相同面积的长方形虎笼四间,一面可以利用原有的墙,其他各面用钢筋网围成。⑴现有可围36m长钢筋网材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?⑵若使每间虎笼面积为24m2,则每间虎笼的长、宽各设计为多少时,可始围成四间虎笼的钢筋网总长最小?
设的内角的对边分别为,且满足. (Ⅰ)求的大小; (Ⅱ)求的取值范围.
(本小题满分12分) 已知函数,为实数)有极值,且在处的切线与直线平行. (I)求实数a的取值范围;(II)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存 在,请说明理由; (Ⅲ)设 求证:.
(本小题满分12分) 已知函数为奇函数,函数在区间上单调递减,在上单调递增. (I)求实数的值; (II)求的值及的解析式; (Ⅲ)设,试证:对任意的且都有.
(本小题满分12分) 关于的函数与数列具有关系:,(=1,2,3,…)(为常数),又设函数的导数,为方程的实根. (I)用数学归纳法证明:; (II)证明:.