本题共有2个小题,第1小题满分4分,第2小题满分8分.已知,函数.(Ⅰ)当时,求使成立的的集合;(Ⅱ)求函数在区间上的最小值.
在四棱锥P -ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°. (1)求四棱锥的体积. (2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.
直三棱柱ABC-A1B1C1的底面为等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2,E,F分别是BC,AA1的中点. 求(1)异面直线EF和A1B所成的角. (2)三棱锥A-EFC的体积.
如图,在四面体ABCD中作截面PQR,若PQ,CB的延长线交于M,RQ,DB的延长线交于N,RP,DC的延长线交于K, 求证:M,N,K三点共线.
如图,已知平行四边形ABCD中,BC=2,BD⊥CD,四边形ADEF为正方形,平面ADEF⊥平面ABCD.记CD=x,V(x)表示四棱锥F-ABCD的体积. (1)求V(x)的表达式. (2)求V(x)的最大值.
如图,在长方体ABCD-A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A-BB1D1D的体积为 cm3.