(本小题共13分)已知动圆过定点,且与直线相切.(1)求动圆的圆心轨迹的方程;(2) 是否存在直线,使过点(0,1),并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.
(本小题满分10分)选修4-5:不等式选讲设函数.(Ⅰ)若解不等式;(Ⅱ)如果关于的不等式有解,求的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程已知直线的极坐标方程为,圆的参数方程为(其中为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程;(Ⅱ)求圆上的点到直线的距离的最小值.
(本小题满分10分)选修4-1几何证明选讲如图,在中,,平分交于点,点在上,.(1)求证:是△的外接圆的切线;(2)若,求的长.
(本小题满分12分)已知函数,其中.(Ⅰ)若是的极值点,求的值;(Ⅱ)求的单调区间;(Ⅲ)若在上的最大值是,求的取值范围 .
(本小题满分12分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线、的斜率分别为、,证明;(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.