已知为坐标原点,向量,点是直线上的一点,且点分有向线段的比为.(1)记函数,,讨论函数的单调性,并求其值域;(2)若三点共线,求的值.
设为实数,函数(Ⅰ)求的单调区间与极值;(Ⅱ)求证:当且时,
某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
设函数(1)设,,证明:在区间内存在唯一的零点;(2) 设,若对任意,有,求的取值范围;(3)在(1)的条件下,设是在内的零点,判断数列的增减性.
已知函数.(1)若函数的图象在处的切线斜率为,求实数的值;(2)在(1)的条件下,求函数的单调区间;(3)若函数在上是减函数,求实数的取值范围.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,直线与椭圆C相交于A、B两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围;