(本题满分分)已知, (Ⅰ)求的值;(Ⅱ)求的值.
有标号为1,2,3,4,5的五个红球和标号为1,2的两个白球,将这七个球排成一排,使两端都是红球.①如果每个白球两边都是红球,共有多少种不同的排法?②如果1号红球和1号白球相邻排在一起,共有多少种不同的排法?③同时满足条件①②的排法有多少种?
设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1,n=1,2,3,….(1)求a1,a2;(2)猜想数列{Sn}的通项公式,并给出严格的证明.
设函数f(x)=x3-(1+a)x2+4ax+24a,其中常数a>1.(1)讨论f(x)的单调性;(2)若当x≥0时,f(x)>0恒成立,求a的取值范围.
从1到9的九个数字中取三个偶数、四个奇数,试问:(1).能组成多少个没有重复数字的七位数?(2).上述七位数中三个偶数排在一起的有几个?(3).(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个?(4).(1)中任意两偶数都不相邻的七位数有几个?
已知(-)n的展开式中,前三项系数的绝对值依次成等差数列.(1)证明:展开式中没有常数项;(2)求展开式中所有有理项.