首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 中等
  • 浏览 1274

已知函数f(x)=6x–6x2,设函数g1(x)=f(x), g2(x)=fg1(x)], g3(x)=f g2(x)],…gn(x)=fgn–1(x)],…
(1)求证:如果存在一个实数x0,满足g1(x0)=x0,那么对一切n∈N,gn(x0)=x0都成立;
(2)若实数x0满足gn(x0)=x0,则称x0为稳定不动点,试求出所有这些稳定不动点;
(3)设区间A=(–∞,0),对于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=fg1(x)]=f(0)<0,
n≥2时,gn(x)<0 试问是否存在区间BAB),对于区间内任意实数x,只要n≥2,都有gn(x)<0.

登录免费查看答案和解析

已知函数f(x)6x–6x2,设函数g1(x)f(x),g2