已知连续型随机变量ζ的概率密度函数f(x)=(1)求常数a的值,并画出ζ的概率密度曲线;(2)求P(1<ζ<)
(1)经计算发现:, 试写出一个使成立的正实数满足的条件,并给出证明; (2)若不等式对任意的正实数恒成立, 求实数的取值范围.
已知数列,其前项和为. (Ⅰ)求; (Ⅱ)猜想的表达式,并给出证明.
设. (1)求 | z1| 的值以及z1的实部的取值范围; (2)若,求证:为纯虚数.
(1)已知,求证:; (2)已知,>0(i=1,2,3,…,3n),求证:+++…+
已知,点B是轴上的动点,过B作AB的垂线交轴于点Q,若,. (1)求点P的轨迹方程; (2)是否存在定直线,以PM为直径的圆与直线的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。