在直三棱柱ABC—A1B1C1中,AB1⊥BC1,AB=CC1=a,BC=b. (1)设E、F分别为AB1、BC1的中点,求证:EF∥平面ABC;(2)求证:AC⊥AB;(3)求四面体的体积.
双曲线的离心率为2,坐标原点到直线AB的距离为,其中A,B. (1)求双曲线的方程; (2)若B1是双曲线虚轴在轴正半轴上的端点,过B1作直线与双曲线交于两点,求时,直线的方程.
已知椭圆的离心率,A,B分别为椭圆的长轴和短轴的端点,M为AB的中点,O为坐标原点,且. (1)求椭圆的方程; (2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.
已知圆方程为: (1)直线过点且与圆交于两点,若,求直线的方程; (2)过圆上一动点作平行于轴的直线,设与轴交点为,若 向量,求动点的轨迹方程.
求过直线与直线的交点,且与点A(0,4)和点B(4,O)距离相等的直线方程.
已知是定义在上的奇函数,且,若时,有成立. (1)判断在上的单调性,并证明; (2)解不等式:; (3)若当时,对所有的恒成立,求实数的取值范围.