已知A、B为两定点,动点M到A与到B的距离比为常数λ,求点M的轨迹方程,并注明轨迹是什么曲线.
(本小题满分13分)已知椭圆的一个焦点是,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设经过点的直线交椭圆于两点,线段的垂直平分线交轴于点,求的取值范围.
(本小题满分14分)如图,在直三棱柱中,,,是的中点.(Ⅰ)求证:∥平面;(Ⅱ)求二面角的余弦值;(Ⅲ)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.
(本小题满分13分)盒中装有个零件,其中个是使用过的,另外个未经使用.(Ⅰ)从盒中每次随机抽取个零件,每次观察后都将零件放回盒中,求次抽取中恰有次抽到使用过的零件的概率;(Ⅱ)从盒中随机抽取个零件,使用后放回盒中,记此时盒中使用过的零件个数为,求的分布列和数学期望.
(本小题满分13分)已知函数,.(Ⅰ)求的零点; (Ⅱ)求的最大值和最小值.
设是给定的正整数,有序数组同时满足下列条件:① ,; ②对任意的,都有.(1)记为满足“对任意的,都有”的有序数组的个数,求;(2)记为满足“存在,使得”的有序数组的个数,求.