(本小题满分13分)如图,四棱锥,底面矩形中,,分别为线段、的中点,⊥平面.(1)求证:∥平面;(2)求证:平面⊥平面;
(本小题共14分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=. (Ⅰ)若点M是棱PC的中点,求证:PA // 平面BMQ; (Ⅱ)求证:平面PQB⊥平面PAD; (Ⅲ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值 .
(本小题共13分)在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc. (Ⅰ)求角A的大小; (Ⅱ)设函数,当取最大值时,判断△ABC的形状.
(本小题共14分)对于,定义一个如下数阵: 其中对任意的,,当能整除时,;当不能整除时,.设. (Ⅰ)当时,试写出数阵并计算; (Ⅱ)若表示不超过的最大整数,求证:; (Ⅲ)若,,求证:.
(本小题共13分)已知椭圆的离心率为,且两个焦点和短轴的一个端点是一个等腰三角形的顶点.斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点. (Ⅰ)求椭圆的方程; (Ⅱ)求的取值范围; (Ⅲ)试用表示△的面积,并求面积的最大值.
(本小题共13分)已知函数. (Ⅰ)求函数在区间上的最小值; (Ⅱ)证明:对任意,都有成立.