(本小题满分13分)如图,已知长方形的两条对角线的交点为,且与所在的直线方程分别为. (1)求所在的直线方程; (2)求出长方形的外接圆的方程.
(本小题满分13分)已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段与轴的交点满足 (1)求椭圆的标准方程; (2)⊙是以为直径的圆,一直线与⊙相切,并与椭圆交于不同的两点.当,且满足时,求面积的取值范围.
(本小题满分12分)已知数列的前和,数列的通项公式. (1)求数列的通项公式; (2)设,求证:;
(本小题满分12分)如图,在四棱锥中, 四边形是直角梯形,,是的中点. (Ⅰ)求证:平面⊥平面; (Ⅱ)若二面角的余弦值为,求直线与平面所成角的正弦值.
(本小题满分12分)甲乙两班进行消防安全知识竞赛,每班出人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得分,答错不答都得分,已知甲队人每人答对的概率分别为,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用表示甲队总得分. (Ⅰ)求随机变量的分布列及其数学期望; (Ⅱ)求在甲队和乙队得分之和为的条件下,甲队比乙队得分高的概率.
(本小题满分12分)设函数. (Ⅰ)求函数的最小正周期和单调减区间; (Ⅱ)将函数的图象向右平移个单位长度后得到函数的图象,求函数在区间 上的最小值.