在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北30°东,俯角为30°的B处,到11时10分又测得该船在岛北60°西、俯角为60°的C处。(1)求船的航行速度是每小时多少千米;(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?
如图,的内心为,分别是的中点,,内切圆分别与边相切于;证明:三线共点.
给定两个数列,满足,, .证明对于任意的自然数n,都存在自然数,使得.
设函数, (I)求函数在上的最大值与最小值; (II)若实数使得对任意恒成立,求的值.
渔场中鱼群的最大养殖量是m吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量。已知鱼群的年增长量y吨和实际养殖量x吨与空闲率乘积成正比,比例系数为k(k>0). 写出y关于x的函数关系式,指出这个函数的定义域; 求鱼群年增长量的最大值; 当鱼群的年增长量达到最大值时,求k的取值范围.
已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,试比较大小: (1)f(6)与f(4)