已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点.(1)用向量法证明E、F、G、H四点共面;(2)用向量法证明: BD∥平面EFGH;(3)设M是EG和FH的交点,求证:对空间任一点O,有.
(本小题满分14分) 如图所示,平面,底面为菱形,为的中点. (1)求证:平面; (2)求证://平面; (3) 求二面角的平面角的大小.
.(本小题满分14分) 已知单调递增的等比数列满足:; (1)求数列的通项公式; (2)若,数列的前n项和为,求成立的正整数 n的最小值.
(本小题满分14分)在△ABC中,分别为角A、B、C的对边,,="3," △ABC的面积为6. ⑴角A的正弦值;⑵求边b、c.
设函数其中为常数. (Ⅰ)若函数有极值点,求的取值范围及的极值点; (Ⅱ)证明:对任意不小于3的正整数,不等式都成立.
.已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记 (Ⅰ)求椭圆的方程; (Ⅱ)求的取值范围; (Ⅲ)求的面积S的取值范围.