.已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围;(Ⅲ)求的面积S的取值范围.
【2015高考新课标1,理21】已知函数f(x)=. (Ⅰ)当a为何值时,x轴为曲线的切线; (Ⅱ)用表示m,n中的最小值,设函数,讨论h(x)零点的个数.
【2015高考湖北,理22】已知数列的各项均为正数,,为自然对数的底数. (Ⅰ)求函数的单调区间,并比较与的大小; (Ⅱ)计算,,,由此推测计算的公式,并给出证明; (Ⅲ)令,数列,的前项和分别记为,, 证明:.
【2015高考四川,理21】已知函数,其中. (1)设是的导函数,评论的单调性; (2)证明:存在,使得在区间内恒成立,且在内有唯一解.
【2015高考重庆,理20】 设函数 (1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程; (2)若在上为减函数,求的取值范围。
【2015高考天津,理20(本小题满分14分)已知函数,其中. (Ⅰ)讨论的单调性; (Ⅱ)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有; (Ⅲ)若关于的方程有两个正实根,求证: