一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)求这箱产品被用户接收的概率;(2)记抽检的产品件数为,求的分布列和数学期望.
已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同.直线的极坐标方程为:,若点为曲线上的动点,其中参数.(1)试写出直线的直角坐标方程及曲线的普通方程;(2)求点到直线距离的最大值.
已知26辆货车以相同速度v由A地驶向400千米处的B地,每两辆货车间距离为d千米,现已知d与v的平方成正比,且当v=20(千米/时)时,d=1(千米).(1)写出d与v的函数关系;(2)若不计货车的长度,则26辆货车都到达B地最少需要多少小时?此时货车速度是多少?
解关于x的不等式
在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底 面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2. (Ⅰ)求证:BE∥平面PAD; (Ⅱ)求证:BC⊥平面PBD; (Ⅲ)求四棱锥P-ABCD的体积。
如图,直二面角A—BD—C,平面ABD⊥平面BCD,若其中给定 AB="AD" =2,,,BC⊥CD .(Ⅰ)求AC与平面BCD所成的角;(Ⅱ)求点A到BC的距离.