一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)求这箱产品被用户接收的概率;(2)记抽检的产品件数为,求的分布列和数学期望.
已知函数f(x)=|x-2|+2|x-a|(a∈R). (I)当a=1时,解不等式f(x)>3; (II)不等式在区间(-∞,+∞)上恒成立,求实数a的取值范围
在平面直角坐标系.x0y中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线 C的极坐标方程为: (I)求曲线l的直角坐标方程; (II)若直线l的参数方程为(t为参数),直线l与曲线C相交于A、B两点求|AB|的值
如图,过圆O外一点P作该圆的两条割线PAB和PCD,分别交圆 O于点A,B,C,D弦AD和BC交于Q点,割线PEF经过Q点交圆 O于点E、F,点M在EF上,且: (I)求证:PA·PB=PM·PQ;(II)求证:.
(本小题满分12分) 已知函数f(x)=ex+ax-1(e为自然对数的底数). (Ⅰ)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积; (II)若f(x)x2在(0,1 )上恒成立,求实数a的取值范围.
椭圆的左、右焦点分别为F1(-1,0),F2(1,0),过F1作与x轴不重合的直线l交椭圆于A,B两点. (Ⅰ)若ΔABF2为正三角形,求椭圆的离心率; (Ⅱ)若椭圆的离心率满足,0为坐标原点,求证为钝角.