向量方法证明:对角线互相平分的四边形是平行四边形。已知四边形ABCD,AC与BD交于O,AO=OC,DO=OB,求证:ABCD是平行四边形。
平面直角坐标系中,已知椭圆:的离心率为,且点(,)在椭圆上. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆:,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点. (ⅰ)求的值; (ⅱ)求面积的最大值.
设函数 f ( x ) = ( x + a ) ln x , g ( x ) = x 2 e x . 已知曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线与直线 2 x - y = 0 平行. (Ⅰ)求 a 的值; (Ⅱ)是否存在自然数 k ,使得方程 f ( x ) = g ( x ) 在 ( k , k + 1 ) 内存在唯一的根?如果存在,求出 k ;如果不存在,请说明理由; (Ⅲ)设函数 m ( x ) = m i n { f ( x ) , g ( x ) } ( m i n { p , q } 表示, p , q 中的较小值),求 m ( x ) 的最大值.
已知数列是首项为正数的等差数列,数列的前项和为. (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前项和.
如图,三棱台DEF-ABC中, A B = 2 D E , G , H 分别为 A C , B C 的中点.
(Ⅰ)求证: B D ∥ 平面 F G H ; (Ⅱ)若 C F ⊥ B C , A B ⊥ B C 求证:平面 B C D ⊥ 平面 E G H .
中,角所对的边分别为.已知 求 和的值.