平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1a>b>0的离心率为32,且点(3,12)在椭圆C上. (Ⅰ)求椭圆C的方程; (Ⅱ)设椭圆E:x24a2+y24b2=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q. (ⅰ)求OQOP的值; (ⅱ)求△ABQ面积的最大值.
(本小题满分13分)已知,若函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)求函数的单调递增区间.
(本小题满分12分)已知动点到点的距离比它到轴的距离多·(Ⅰ)求动点的轨迹方程;(Ⅱ)设动点的轨迹为,过点的直线与曲线交于两点,若轴正半轴上存在点使得是以为直角顶点的等腰直角三角形,求直线的方程.
本小题满分12分)设函数.(Ⅰ)若函数在其定义域上是单调函数,求实数的取值范围;(Ⅱ)若函数在其定义域上既有极大值又有极小值,求实数的取值范围.
(本小题满分12分)如题19图,平行六面体的下底面是边长为的正方形,,且点在下底面上的射影恰为点.(Ⅰ)证明:面;(Ⅱ)求二面角的大小.
(本小题满分13分)已知函数,若数列满足,且.(Ⅰ)求证:数列是等差数列;(Ⅱ)令(),设数列的前项和为,求使得成立的的最大值.