为迎接2008年奥运会召开,某工艺品加工厂准备生产具有收藏价值的奥运会标志——“中国印·舞动的北京”和奥运会吉祥物——“福娃”.该厂所用的主要原料为A、B两种贵重金属,已知生产一套奥运会标志需用原料A和原料B的量分别为4盒和3盒,生产一套奥运会吉祥物需用原料A和原料B的量分别为5盒和10盒.若奥运会标志每套可获利700元,奥运会吉祥物每套可获利1200元,该厂月初一次性购进原料A、B的量分别为200盒和300盒.问该厂生产奥运会标志和奥运会吉祥物各多少套才能使该厂月利润最大,最大利润为多少?
(本小题满分12分)甲、乙等五名环保志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者. (1)求甲、乙两人同时参加岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率; (3)设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列.
(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点. (1) 求证:CE∥平面PAB; (2) 求PA与平面ACE所成角的大小; (3) 求二面角E-AC-D的大小.
(本小题满分12分) 设函数f(x)=,其中向量,. (1)求f( )的值及f( x)的最大值。 (2)求函数f( x)的单调递增区间.
设曲线:上的点到点的距离的最小值为,若,, (1)求数列的通项公式; (2)求证:; (3)是否存在常数,使得对,都有不等式:成立?请说明理由.
已知函数,R. (1)求函数的单调区间; (2)是否存在实数,使得函数的极值大于?若存在,求的取值范围;若不存 在,说明理由.