在平面直角坐标系O中,直线与抛物线相交于、两点。(Ⅰ)求证:“如果直线过点,那么=”是真命题;(Ⅱ)写出(Ⅰ)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
已知数列、中,,且当时,,.记的阶乘. (1)求数列的通项公式; (2)求证:数列为等差数列; (3)若,求的前项和.
一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数:,,,,,. (1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率; (2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
已知中,三条边所对的角分别为、、,且. (1)求角的大小; (2)若,求的最大值.
已知函数. (1)若曲线在和处的切线相互平行,求的值; (2)试讨论的单调性; (3)设,对任意的,均存在,使得.试求实数的取值范围.
已知点直线,为平面上的动点,过点作直线的垂线,垂足为,且. (1)求动点的轨迹方程; (2)、是轨迹上异于坐标原点的不同两点,轨迹在点、处的切线分别为、,且,、相交于点,求点的纵坐标.