已知椭圆C的方程为 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) ,右焦点为 F ( 2 , 0 ) ,且离心率为 6 3 .
(1)求椭圆C的方程;
(2)设M,N是椭圆C上的两点,直线 MN 与曲线 x 2 + y 2 = b 2 ( x > 0 ) 相切.证明:M,N,F三点共线的充要条件是 | MN | = 3 .
(本题满分10分)选修4-4 :坐标系与参数方程 将圆上各点的纵坐标压缩至原来的,所得曲线记作C;将直线3x-2y-8=0 绕原点逆时针旋转90°所得直线记作l .(I)求直线l与曲线C的方程; (II)求C上的点到直线l的最大距离.
(本小题满分10分)选修4-1:几何证明选讲 如图,AB是的直径,AC是弦,直线CE和切于点C, AD丄CE,垂足为D. (I) 求证:AC平分; (II) 若AB=4AD,求的大小.
(本小题满分12分) 已知函数的零点的集合为{0,1},且是f(x)的一个极值点。 (1)求的值; (2)试讨论过点P(m,0)与曲线y=f(x)相切的直线的条数。
(本小题满分12分) 已知点F( 1,0),与直线4x+3y + 1 =0相切,动圆M与及y轴都相切. (I )求点M的轨迹C的方程;(II)过点F任作直线l,交曲线C于A,B两点,由点A,B分别向各引一条切线,切点 分别为P,Q,记.求证是定值.
(本小题满分12分) 在正四棱锥V - ABCD中,P,Q分别为棱VB,VD的中点, 点M在边BC上,且BM: BC = 1 : 3,AB =2,VA =" 6." (I )求证CQ∥平面PAN; (II)求证:CQ⊥AP.