已知函数 f x = x 1 - ln x .
(1)讨论 f x 的单调性;
(2)设 a , b 为两个不相等的正数,且 b ln a - a ln b = a - b ,证明: 2 < 1 a + 1 b < e .
(本小题12分)袋中有大小、形状相同的红、黑球各两个,现依次不放回地随机取3次,每次取一个球. (1)试问:一共有多少种不同的结果,请列出所有可能的结果; (2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.
(本小题13分)已知向量, (1)当∥时,求的值; (2)求在上的值域.
(本小题满分12分) 已知(其中,为实数). (I)若在处取得极值为2,求、的值; (II)若在区间上为减函数且,求的取值范围.
(本小题满分12分) 已知椭圆的左、右焦点分别为、,离心率,右准线方程为. (I)求椭圆的标准方程; (II)过点的直线与该椭圆交于M、N两点,且,求直线的方程.
(本小题满分12分)(文科做前两问;理科全做.) 某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换. (I)在第一次灯棍更换工作中,求不需要更换灯棍的概率; (II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率; (III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.