在 △ ABC 中,角 A 、 B 、 C 所对的边长分别为 a 、 b 、 c , b = a + 1 , c = a + 2 ..
(1)若 2 sin C = 3 sin A ,求 △ ABC 的面积;
(2)是否存在正整数 a ,使得 △ ABC 为钝角三角形?若存在,求出 a 的值;若不存在,说明理由.
已知中,顶点,边上的中线所在直线的方程是,边上高所在直线的方程是.(1)求点、C的坐标; (2)求的外接圆的方程.
设全集为,集合,.(1)求如图阴影部分表示的集合;(2)已知,若,求实数的取值范围.
已知直线l经过直线3x+4y-2=0与直线2x+y+2=0的交点P,且垂直于直线x-2y-1=0 .(1)求直线l的方程; (2)求直线l关于原点O对称的直线方程。
在某市组织的一次数学竞赛中全体参赛学生的成绩近似服从正态分布N(60,100),已知成绩在90分以上(含90分)的学生有13人.(1)求此次参加竞赛的学生总数共有多少人?(2)若计划奖励竞赛成绩排在前228名的学生,问受奖学生的分数线是多少?
若一批白炽灯共有10000只,其光通量X服从正态分布,其正态分布密度函数是f(x)=,x∈(-∞,+∞),试求光通量在下列范围内的灯泡的个数.(1)(203,215);(2)(191,227).