在 △ ABC 中,角 A 、 B 、 C 所对的边长分别为 a 、 b 、 c , b = a + 1 , c = a + 2 ..
(1)若 2 sin C = 3 sin A ,求 △ ABC 的面积;
(2)是否存在正整数 a ,使得 △ ABC 为钝角三角形?若存在,求出 a 的值;若不存在,说明理由.
如图,相交于A、B两点,AB是的直径,过A点作的切线交于点E,并与BO1的延长线交于点P,PB分别与、交于C,D两点。 求证:(1)PA·PD=PE·PC; (2)AD=AE。
如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线l:x=﹣将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上. (1)求椭圆C的方程; (2)求的取值范围.
已知数列{an}中,a1=1,an>0,an+1是函数f(x)=x3+的极小值点. (1)证明数列{an}为等比数列,并求出通项公式an; (2)设bn=nan2,数列{bn}的前n项和为Sn,求证:.
某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如右表所示:已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示经销一辆汽车的利润. (1)求上表中的a,b值; (2)若以频率作为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的概率P(A); (3)求η的分布列及数学期望Eη.
如图,四棱锥P﹣ABCD的底边ABCD为直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点. (1)求证:BE∥平面PAD; (2)若BE⊥平面PCD,求平面EBD与平面CBD夹角的余弦值.