已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明:数列{lg(1+an) }是等比数列.(2)设Tn=(1+a1)(1+a2)…(1+an),求Tn及数列{an}的通项.(3)记bn=,数列{bn}的前n项和为Sn,求的值
直线l经过点(3,2),且在两坐标轴上的截距相等,求直线l的方程.
求过点A(5,2),且在坐标轴上截距互为相反数的直线l的方程.
过点P(1,4)引一条直线,使它在两条坐标轴上的截距为正值,且它们的和最小,求这条直线的方程.
求经过点A(2,m)和B(n,3)的直线方程.
已知实数x、y满足(x-2)2+(y-1)2=1,求z=的最大值与最小值.